Positive Topological Entropy for Magnetic

نویسنده

  • JOSÉ ANTÔNIO GONÇALVES
چکیده

We study the topological entropy of the magnetic flow on closed Riemannian surface. We prove that if the magnetic flow has a non-hyperbolic closed orbit in some energy set T c M = E −1 (c), then there exists an exact C ∞-perturbation of the 2-form Ω such that the new magnetic flow has positive topological entropy in T c M. We also prove that if the magnetic flow has an infinite number of closed orbits in T c M , then there exists an exact C 1-perturbation of Ω with positive topological entropy in T c M. The proof of the last result is based on an analogue of Frank's Lemma for magnetic flows on surfaces, that is proven in this work, and the Mañe's techniques on dominated splitting. As a consequence of those results, an exact magnetic flows on S 2 in high energy levels admits a C 1-perturbation with positive topological entropy. In the appendices we show that an exact magnetic flows on the torus in high energy levels admits a C ∞-perturbation with positive topological entropy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Positive Topological Entropy for Magnetic Flows on Surfaces

We study the topological entropy of the magnetic flow on closed riemannian surface. We prove that if the magnetic flow has a non-hyperbolic closed orbit in some energy set T c M = E −1 (c), then there exists an exact C ∞-perturbation of the 2-form Ω such that the new magnetic flow has positive topological entropy in T c M. We also prove that if the magnetic flow has an infinite number of closed...

متن کامل

Entropy operator for continuous dynamical systems of finite topological entropy

In this paper we introduce the concept of entropy operator for continuous systems of finite topological entropy. It is shown that it generates the Kolmogorov entropy as a special case. If $phi$ is invertible then the entropy operator is bounded with the topological entropy of $phi$ as its norm.

متن کامل

Entropy of a semigroup of maps from a set-valued view

In this paper, we introduce a new entropy-like invariant, named Hausdorff metric entropy, for finitely generated semigroups acting on compact metric spaces from a set-valued view and study its properties. We establish the relation between Hausdorff metric entropy and topological entropy of a semigroup defined by Bis. Some examples with positive or zero Hausdorff metric entropy are given. Moreov...

متن کامل

Positive Topological Entropy and ℓ1

We characterize positive topological entropy for quasi-state space homeomorphisms induced from C∗-algebra automorphisms in terms of dynamically generated subspaces isomorphic to l1. This geometric condition is also used to give a description of the topological Pinsker algebra. In particular we obtain a geometric characterization of positive entropy for topological dynamical systems, as well as ...

متن کامل

Topological entropy of a magnetic flow and the growth of the number of trajectories

We prove formulae relating the topological entropy of a magnetic flow to the growth rate of the average number of trajectories connecting two points.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006